设{an}是等差数列,其前n项和为Sn,已知S7=63,a4+a5+a6=33,(1)写出数列{an}的通项公式;(2) 求数列

2025-06-26 15:18:42
推荐回答(1个)
回答1:

(1)∵s7

(a1+a7)
2
×7=7a4=63
∴a4=9,又a4+a5+a6=33,3a5=33,则a5=11
 公差d=2,an=2n+1;
(2)∵bn=2an+n=22n+1+n
∴Tn=b1+b2+…+bn=(23+1)+(25+2)+??+(22n+1+n)
=(23+25+…+22n+1)+(1+2+…+n)
=
8(4n?1)
3
+
n(n+1)
2

 (3)由等差数列的前n项和公式可得,Sn=3n+
n(n?1)
2
×2=n2+2n=n(n+2)

1
Sn
1
n(n+2)
1
2
(
1
n
?
1
n+2
)

1
S1
+
1
S2
 +…+
1
Sn
1
2
(1?
1
3
+
1
2
?
1
4
+…+
1
n
?
1
n+2
)

=
1
2
(1+
1
2
?
1
1+n
?
1
n+2
 )=
3
4
?
2n+3
2(n+1)(n+2)
3
4