关于均值不等式 调和平均数 加权平均数 平方 几何平均数 和平方平均数分别是什么 其大小关系 最好

2025-06-27 05:38:57
推荐回答(1个)
回答1:

用均值不等式求证。调和平均数<=几何平均数<=代数平均数<=平方平均数。(二元的)
已知:a>0,b>0,求证:2/(1/a+1/b)≤√ab≤(a+b)/2≤√[(a²+b²)/2]
1、证:√ab≤(a+b)/2
∵(√a-√b)²≥0
∴a+b-2√ab≥0
∴a+b≥2√ab…………公式①
即√ab≤(a+b)/2

2、证:2/(1/a+1/b)≤√ab
根据公式①,有
√(a/b) + √(b/a)≥2√[√(a/b) · √(b/a)]=2
左边提取√ab,得
√ab(1/a + 1/b)≥2
即2/(1/a+1/b)≤√ab

3、证:(a+b)/2≤√[(a²+b²)/2]
∵a²+b²≥2ab
两边同时加a²+b²,得
2(a²+b²)≥a²+b²+2ab=(a+b)²
两边同时除以4,得
(a²+b²)/2≥(a+b)²/4
两边取根号,得
(a+b)/2≤√[(a²+b²)/2]
如果您满意我的回答,请及时点击【采纳为满意回答】按钮!!!
手机提问的朋友在客户端右上角评价点【满意】即可!!!
你的采纳是我前进的动力!!!
谢谢!!!