(1)已知l1的解析式,令y=0求出x的值即可;
(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;
(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,ADC高就是C到AD的距离.
解答:解:(1)由y=-3x+3,令y=0,得-3x+3=0,
∴x=1,
∴D(1,0);
(2)设直线l2的解析表达式为y=kx+b,
由图象知:x=4,y=0;
x=3,y=-3/2,
∴4k+b=0 3k+b=-3/2,
∴k=3/2 b=-6,
∴直线l2的解析表达式为y=3/2x-6;
(3)由y=-3x+3 y=3/2x-6,
解得x=2 y=-3,
∴C(2,-3),
∵AD=3,
∴S△ADC=1/2×3×|-3|=9/2;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是C到AD的距离,即C纵坐标的绝对值=|-3|=3,
则P到AD距离=3,
∴P纵坐标的绝对值=3,点P不是点C,
∴点P纵坐标是3,
∵y=1.5x-6,y=3,
∴1.5x-6=3
x=6,
所以P(6,3).