(I)∵|PF|=4,∴xP+=4,
∴P点的坐标是(4-,4),
∴有16=2P(4-)?p=4,
∴抛物线方程是y2=8x.
(II)由(I)知点P的坐标为(2,4),
∵∠APB的角平分线与x轴垂直,∴PA、PB的倾斜角互补,即PA、PB的斜率互为相反数,
设PA的斜率为k,则PA:y-4=k(x-2),k≠0
与抛物线方程联立,可得y2-y-16+=0,方程的解为4、y1,
由韦达定理得:y1+4=,即y1=-4,同理y2=--4,
又y12=8x1,y22=8x2,
∴kAB═-1,
设AB:y=-x+b,与抛物线方程联立可得y2+8y-8b=0,
由韦达定理得:y1+y2=-8,y1y2=-8b,
|AB|=|y1-y2|=8,点P到直线AB的距离d=,
S△ABP=2×,设b+2=t
则(b+2)(b2-12b+36)=t3-32t-64-(3t-8)(t-8),
∵△=64+32b>0?b>-2,y1?y2=-8b≥0?b≤0,∴-2<b≤0,
设t=b+2∈(0,2],
则(b+2)(b2-12b+36)=t3-16t2+64t=f(t),
f′(t)=3t2-32t-64=(3t-8)(t-8),
由t∈(0,2]知f′(t)>0,∴f(t)在(0,2]上为增函数,
∴f(t)最大=f(2)=72,
∴△PAB的面积的最大值为2×=24,
此时b=0,直线AB的方程为x+y=0.