等比数列{an},首项a1>0,公比q>0,Sn为前n项和,记Gn=a1^2+a^2+…+an^2.求lim(n趋近于正无穷)(Gn⼀Sn)

过程。谢谢
2025-06-28 07:26:34
推荐回答(1个)
回答1:

Gn=a1^2+a^2+…+an^2=a1^2q^0+a1^2q^2+…+a1^2q^(2n-2)=a1^2(q^2n-1)/(q^2-1)
Sn=a1(q^n-1)/(q-1)
limGn/Sn
=lim{[a1^2(q^2n-1)/(q^2-1)]/[a1(q^n-1)/(q-1)]}
=lim[a1(q^n+1)/(q+1)]
当q<1,limGn/Sn=a1/(q+1)
当q=1,limGn/Sn=a1
当q>1,无极限