已知A、B是抛物线y 2 =2px(p>0)上异于原点O的两点,则“ OA ? OB =0

2025-06-25 23:22:50
推荐回答(1个)
回答1:

由“
OA
?
OB
=0”推“直线AB恒过定点(2p,0)”
设点A,B的坐标分别为(x 1 ,y 1 ),(x 2 ,y 2
(I)当直线l有存在斜率时,设直线方程为y=kx+b,显然k≠0且b≠0.
联立方程得:
y=kx+b
y 2 =2px
消去y得k 2 x 2 +(2kb-2p)x+b 2 =0
由题意: x 1 x 2 =
b 2
k 2
,y 1 y 2 =(kx 1 +b)(kx 2 +b)=
2pb
k

又由OA⊥OB得x 1 x 2 +y 1 y 2 =0,
b 2
k 2
+
2pb
k
=0
,解得b=0(舍去)或b=-2pk
故直线l的方程为:y=kx-2pk=k(x-2p),故直线过定点(2p,0)
(II)当直线l不存在斜率时,设它的方程为x=m,显然m>0
联立方程得:
x=m
y 2 =2x
解得 y=±
2m
,即y 1 y 2 =-2m
又由OA⊥OB得x 1 x 2 +y 1 y 2 =0,即m 2 -2m=0,解得m=0(舍去)或m=2
可知直线l方程为:x=2,故直线过定点(2,0)
综合(1)(2)可知,满足条件的直线过定点(2,0).
由“直线AB恒过定点(2p,0)”推“
OA
?
OB
=0”
设l:x=ty+2p代入抛物线y 2 =2px消去x得,
y 2 -2pty-4p 2 =0,设A(x 1 ,y 1 ),B(x 2 ,y 2
则y 1 +y 2 =2pt,y 1 y 2 =-4p 2
OA
?
OB
=x 1 x 2 +y 1 y 2 =(ty 1 +2p)(ty 2 +2p)+y 1 y 2
=t 2 y 1 y 2 +2pt(y 1 +y 2 )+4p 2 +y 1 y 2
=-4p 2 t 2 +4p 2 t 2 +4p 2 -4p 2 =0.
∴“
OA
?
OB
=0”是“直线AB恒过定点(2p,0)”的充要条件.
故选B.