(1)直线CD是△ABC的黄金分割线.理由如下:
设△ABC的边AB上的高为h.
则S△ADC=
AD?h,S△BDC=1 2
BD?h,S△ABC=1 2
AB?h,1 2
∴
=S△ADC S△ABC
,AD AB
=S△BDC S△ADC
.BD AD
又∵点D为边AB的黄金分割点,
∴
=AD AB
,BD AD
∴
=S△ADC S△ABC
.S△BDC S△ADC
故直线CD是△ABC的黄金分割线.
(2)∵三角形的中线将三角形分成面积相等的两部分,
∴s1=s2=
s,即1 2
≠s1 s
,s2 s1
故三角形的中线不可能是该三角形的黄金分割线.
(3)∵DF∥CE,
∴△DFC和△DFE的公共边DF上的高也相等,
∴S△DFC=S△DFE,
∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC.
又∵
=S△ADC S△ABC
,S△BDC S△ADC
∴
=S△AEF S△ABC
.S四边形BEFC S△AEF
因此,直线EF也是△ABC的黄金分割线.(7分)
(4)画法不惟一,现提供两种画法;
画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线.
画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN就是平行四边形ABCD的黄金分割线.
(9分)