1、f(x)在 -π/2到π/2上存在,
那么积分得到 ∫(-π/2到π/2) Acosx dx =1
即A[sin(π/2)-sin(-π/2)]= 2A=1
故A=1/2
那么P(-π/3到π/3)
=∫(-π/3到π/3) 1/2 *cosx
=1/2 sin(π/3) -1/2sin(-π/3)
=√3/2
2、
∫(0到1) Ax dx +∫(1到2) 2-x dx
=0.5A^2 +(2*2 -0.5*2^2 -2*1 +0.5*1^2)
=0.5A^2 +0.5 =1
解得A=1
所以F(x)=
0.5x^2 0
P(1/2
=0.5*(1-0.5^2) +(2*1.5 -0.5*1.5^2 -2*1 +0.5*1^2)
=0.75