外接圆的圆心是三角形三条中线的交点。设边AC的中点坐标为D(2,5),则根据两点确定一条直线,可以得到BD的方程为:y=7x/4+3/2.同理,可得到BC的中点坐标F(3/2,3/2),则AE的方程为:y=-7x/5+18/5.联立这两个方程,其交点就是所求圆心的坐标为O(2/3,8/3).AO的长就是半径r的长,利用两点间距离公式可得到:r^2=(-1-2/3)^2+(5-8/3)^2=74/9.所以圆的方程为:(x-2/3)^2+(y-8/3)^2=74/9.