已知数列An中,其前N项和为Sn,且N,An,Sn成等差求数列求数列An的通项工式,,求Sn>57时n的取值范围

2025-06-24 23:38:10
推荐回答(1个)
回答1:

  1. 当n=1时,1,a1,s1=a1成等差数列,公差为0,即a1=1
    因为n,an,sn成等差,所以2an=n+sn
    即sn=2an-n
    s(n-1)=2a(n-1)-(n-1)
    上二式相减得an=sn-s(n-1)=2an-2a(n-1)-1
    则an=2a(n-1)+1
    an+1=2(a(n-1)+1)

    [an+1]/[a(n-1)+1]=2

       {an+1}是以a1+1=2为首项,q=2为公比的等比数列.

        则an+1=2x2^(n-1)=2^n,当n=1时a1+1=2

        所以:an=2^n-1

2.Sn=2[1-2^(n)]/(1-2)-n=2^(n+1)-n-2>57

即2^(n+1)>59+n

则当n=5时,2^6<59+5

故Sn>57时n的取值范围:n>5