当n=1时,1,a1,s1=a1成等差数列,公差为0,即a1=1
因为n,an,sn成等差,所以2an=n+sn
即sn=2an-n
s(n-1)=2a(n-1)-(n-1)
上二式相减得an=sn-s(n-1)=2an-2a(n-1)-1
则an=2a(n-1)+1
an+1=2(a(n-1)+1)
[an+1]/[a(n-1)+1]=2
{an+1}是以a1+1=2为首项,q=2为公比的等比数列.
则an+1=2x2^(n-1)=2^n,当n=1时a1+1=2
所以:an=2^n-1
2.Sn=2[1-2^(n)]/(1-2)-n=2^(n+1)-n-2>57
即2^(n+1)>59+n
则当n=5时,2^6<59+5
故Sn>57时n的取值范围:n>5