已知tan(2π-α)=-1⼀3,则sin(2π-α)cos(π+α)=

2025-06-28 15:14:55
推荐回答(2个)
回答1:

解:
tan(2π-a)=-1/3
所以tana=1/3

sin(2π-a)cos(π+a)
=sinacosa=tana/(tan^2a+1)=(1/3)/(1/9+1)=(1/3)/(10/9)=1/3x9/10=3/10

回答2:

sin(2π-α)cos(π+α)=3/10

过程:
∵tan(2π - α)= -tanα= -1/3
∴tanα=1/3
∵sin(2π-α)cos(π+α)
= (- sinα) * (- cosα)
=sinαcosα
=sinαcosα /(sin^2α+cos^2α)
=tanα /(tan^2α+1)
=(1/3)/[(1/3)^2+1]
=(1/3)/[10/9]
=3/10
∴原式=3/10