求分式方程1⼀x+1+1⼀x-1=0

2025-06-27 04:42:19
推荐回答(4个)
回答1:

1/(x+1)+1/(x-1)=0
1/(x+1)=-1/(x-1)
两边同乘(x+1)(x-1)得:
x-1=-x-1
2x=0
x=0
检验:
当x=0时,(x+1)(x-1)不等于0,所以原方程的解是
x=0
(注:你的问题应是1/(x+1)+1/(x-1)=0吧?)

回答2:

先通分,(x-1)/(x+1)(x-1) + (x+1)/(x+1)(x-1)=0
然后合并同类项得,2x/(x平方-1)=0
分母不能为零,分子为零,所以x=0且x≠±1

回答3:

1/(x+1)+1/(x-1)=0
1/(x+1)=-1/(x-1)
x-1=-x-1
2x=0
x=0
因为0不可以做分母
所以x无解

回答4:

通分
(x-1)/(x+1)(x-1) + (x+1)/(x+1)(x-1)=0

2x/(x平方-1)=0

算得x=0