1/(x+1)+1/(x-1)=0
1/(x+1)=-1/(x-1)
两边同乘(x+1)(x-1)得:
x-1=-x-1
2x=0
x=0
检验:
当x=0时,(x+1)(x-1)不等于0,所以原方程的解是
x=0
(注:你的问题应是1/(x+1)+1/(x-1)=0吧?)
先通分,(x-1)/(x+1)(x-1) + (x+1)/(x+1)(x-1)=0
然后合并同类项得,2x/(x平方-1)=0
分母不能为零,分子为零,所以x=0且x≠±1
1/(x+1)+1/(x-1)=0
1/(x+1)=-1/(x-1)
x-1=-x-1
2x=0
x=0
因为0不可以做分母
所以x无解
通分
(x-1)/(x+1)(x-1) + (x+1)/(x+1)(x-1)=0
2x/(x平方-1)=0
算得x=0