一道关于二项式的题!

2025-06-28 21:19:25
推荐回答(1个)
回答1:

解由(x+a/√x)^6展开式的常数项为240
由Tr+1=C(6,r)x^(6-r)*(a/√x)^r
=a^r*C(6,r)x^(6-r)*(1/√x)^r
=a^r*C(6,r)x^(6-r)*(x)^(-r/2)
=a^r*C(6,r)x^(6-3r/2)
令6-3r/2=0,即r=4
即常数项为a^4*C(6,4)x^(0)=a^4*15=240
即a^4=16
解得a=2或a=-2(舍去)
即本题为求(x+2)(x-4)²展开式含x²项
(x+2)(x-4)²=(x+2)(x²-8x+16)
=x³-8x²+16x+2x²-16x+32
=x³-6x²+32
即展开式含x²项的系数为-6
即选C