解法一:
lim(x→1) [a/(1 - x²) + x/(x - 1)]
= lim(x→1) [x/(x - 1) - a/(x² - 1)]
= lim(x→1) [x(x + 1) - a]/(x² - 1)
= lim(x→1) (x² + x - a)/[(x + 1)(x - 1)]
当x→1时分母→0
而极限存在且分子和分母为同阶无穷小,所以分子也必须→0
∴lim(x→1) x² + x - a = 0
1 + 1 - a = 0
a = 2
或解法二:因式分解法