解:3.原式=lim(x->+∞){(x^2+x+1)/[x(√(x^2+2x)+√(x-1))]} (分子分母同乘√(x^2+2x)+√(x-1))
=lim(x->+∞){(1+1/x+1/x^2)/[√(1+2/x)+√(1/x-1/x^2)]} (分子分母同除x^2)
=(1+0+0)/[√(1+0)+√(0-0)]
=0
4.原式=lim(x->+∞){[3x^2/(1+x^3)]/[2x/(1+x^2)]} (∞/∞型极限,应用罗比达法则)
=lim(x->+∞){[3(x+x^3)]/[2(1+x^3)]}
=lim(x->+∞){[3(1/x^2+1)]/[2(1/x^3+1)]} (分子分母同除x^3)
=[3(0+1)]/[2(0+1)]
=3/2。