f(x)=sin(x+∏⼀4)+2sin(x-∏⼀4)-4cos2x+3cos(x+3∏⼀4) (1

2025-06-26 23:17:02
推荐回答(1个)
回答1:

f(x)=sin(x+π/4)+2sin(x-π/4)-4cos2x+3cos(x+3π/4)
=(1/√2)(sinx+cosx)+√2(sinx-cosx)-4cos2x-(3/√2)(cosx+sinx)
=-2√2cosx-4cos2x,
(1)f(x)是偶函数。
(2)设t=cosx,x∈[π/2,π],则t∈[-1,0],
f(x)=-2√2t-4(2t^2-1)
=-8t^2-2√2t+4
=-8(t+√2/8)^2+17/4,记为g(t),
f(x)|max=g(-√2/8)=17/4,
f(x)|min=g(-1)=2√2-4.