若x>=a,则f(x)=x^2-ax 其对称轴为x=a/2
当a/2>=2即a>=4时,最小值为f(2)=4-2a
当a/2<=1即a<=2时,最小值为f(1)=1-a
当1若x 当a/2>=2即a>=4时,最小值为f(1)=a-1
当a/2<=1即a<=2时,最小值为f(2)=2a-4
当12-a/2,即a>3(同时a<4),则最小值为f(1)=a-1
若a/2-1<2-a/2,即a<3(同时a>2),则最小值为f(2)=2a-4
当1≤a≤2时,f(x)最小值为0
当a<1时,f(x)=x^2-ax,对称轴为x=a/2<1,f(x)在[1,2]上单调递增
此时,f(x)最小值=f(1)=1-a
当2<a≤3时,f(x)=-x^2+ax,对称轴为x=a/2∈(1,3/2]
此时,f(x)最小值=f(2)=2a-4
当a>3时,f(x)=-x^2+ax,对称轴为x=a/2∈(3/2,+∞)
此时,f(x)最小值=f(1)=a-1