(1)
Sn=a1+a2+...+an
=2·1-⅓+2·2-⅓²+...+2n-⅓ⁿ
=2(1+2+...+n)-(⅓+⅓²+...+⅓ⁿ)
=2·n(n+1)/2 -⅓·(1-⅓ⁿ)/(1-⅓)
=n²+n+½·3⁻ⁿ-½
(2)
a=0时,an=-n
Sn=a1+a2+...+an=-(1+2+...+n)=-½n(n+1)
a=1时,an=1-n=-(n-1)
Sn=a1+a2+...+an
=-[0+1+...+(n-1)]
=-½n(n-1)
a≠0且a≠1时,
Sn=a1+a2+...+an
=a-1+a²-2+...+aⁿ-n
=(a+a²+...+aⁿ)-(1+2+...+n)
=a(aⁿ-1)/(a-1) -½n(n+1)
a=0时,表达式同样成立
综上,得
Sn=-½n(n-1),(a=1)
a(aⁿ-1)/(a-1) -½n(n+1),(a≠1)
(3)
Sn=a1+a2+a3+...+an=1·½ +3·½²+5·½³+...+(2n-1)·½ⁿ
½Sn=1·½²+3·½³+...+(2n-3)·½ⁿ+(2n-1)·½ⁿ⁺¹
Sn-½Sn=½Sn=½+2·½²+2·½³+...+2·½ⁿ-(2n-1)·½ⁿ⁺¹
Sn=1+1+½+...+½ⁿ⁻²-(2n-1)·½ⁿ
=1+1·(1-½ⁿ⁻¹)/(1-½) -(2n-1)·½ⁿ
=3-(2n+3)·½ⁿ