f(x)=ax³-3x²f'(x)=3ax²-6x(1)f'(1)=0,即:3a-6=0,得:a=2(2)f'(x)>0,对x∈(-1,0)成立 3ax²-6x>0 ax²-2x>0 ax²>2x a>2/x另半个上续
f(x)的导数在x=1时为0f(x)‘=(x^2(ax-3))'=(ax^3)'-(3x^2)'=3ax^2-6xf(x)‘=3a*1-6=0a=2第(2)见下一题。