数列{an}中,a1=4,an+1=(n+2)⼀n*an,则an=

数列{an}中,a1=4,an+1=(n+2)/n*an,则an=
2025-06-25 21:03:51
推荐回答(2个)
回答1:

a(n+1)=(n+2)/n*an
a1=4,
a2=12,
a3=24,
a4=40,
a=60,
a6=84,
.........

a2-a1=8
a3-a2=12
..............
an-a(n-1)=4*n
以上等式相加得
an-a1=4*2+4*3+4*4+....+4*n
an=4+4*2+4*3+4*4+....+4*n
an=4*(1+2+3+....+n)
an=4*n(n+1)/2
an=2n(n+1)

回答2:

a(n+1)/(n+1)=(n+2)/(n+1)*an/n
令an/n=bn
则b(n+1)/bn=(n+2)/(n+1)
bn/b(n-1)=(n+1)/n
```````````````````````````
```````````````````````````
b2/b1=3/2
左右分别相乘
有b(n+1)/b1=(n+2)/2
an可得通项公式 太繁琐不详细解答了