已知x、y均为实数,且满足xy+x+y=17,x^2y+xy^2=66求x^4+x^3y+x^2y^2+xy^3+y^4的值。

2025-06-29 07:44:47
推荐回答(2个)
回答1:

解:x2y+xy2=xy(x+y)=66
设xy=m,x+y=n
则m+n=17,mn=66
∴m=6,n=11或m=11,n=6(舍去)
x2+y2
=112-2×6=109
x2y2=36
x4+y4
=1092-36×2=11809
x4+x3y+x2y2+xy3+y4
=11809+6×109+36=12499
望采纳谢谢

回答2:

x^2y+xy^2=66得xy(x+y)=66令xy=a,x+y=b
得方程组a+b=17,ab=66 解得a=6,b=11或a=11,b=6
当a=6,b=11时,x^2+y^2=(x+y)^2-2xy=b^2-2a=109
x^4+x^3y+x^2y^2+xy^3+y^4=(x^2+y^2)^2+xy(x^2+y^2)-x^2y^2=12499
那个一样