三角函数是不是只需要背sin,cos tan,csc cot... 就行了吗?

2025-06-27 12:50:04
推荐回答(2个)
回答1:

NONONO
三角函数是高中最难学的之一
因为要接触很多公式,并不是只需要背sin,cos tan,csc cot
超多 资料
相关概念
三角形与三角函数
  1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)   2.第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC   3.第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc·cosA   4.正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)   5.三角形中的恒等式:   对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC   证明:   已知(A+B)=(π-C)   所以tan(A+B)=tan(π-C)   则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)   整理可得   tanA+tanB+tanC=tanAtanBtanC   类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ   三角函数图像:
定义域和值域
  sin(x),cos(x)的定义域为R,值域为〔-1,1〕   tan(x)的定义域为x不等于π/2+kπ,值域为R   cot(x)的定义域为x不等于kπ,值域为R   y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a²+b²) , c+√(a²+b²)]
三角函数的画法(以y=sinx的图像为例)
  得到y=Asin(ωx+φ)的图像:   方法一:   y=sinx→【左移(φ>0)/右移(φ<0) ∣∣∣φ∣个单位】 →y=sin(x+φ)→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sin(ωx+φ) →【纵坐标变为原来的A倍(伸长[A>1] / 缩短[00)/右移(φ<0)∣φ∣/ω 个单位】→y=sin(ωx+φ) →【纵坐标变为原来的A倍(伸长[A>1] / 缩短[0初等三角函数导数
   三角函数图像
y=sinx---y'=cosx   y=cosx---y'=-sinx   y=tanx---y'=1/cos^2x =sec^2x   y=cotx---y'= -1/sin^2x= - csc^2x   y=secx---y'=secxtanx   y=cscx---y'=-cscxcotx   y=arcsinx---y'=1/√(1-x²)   y=arccosx---y'= -1/√(1-x²)   y=arctanx---y'=1/(1+x²)   y=arccotx---y'= -1/(1+x²)
倍半角规律
  如果角a的余弦值为1/2,那么a/2的余弦值为√3/2
反三角函数
  三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

回答2:

初中还是高中啊
初中记住这些就差不多了 高中的话远远不够的 三角函数的二倍角公式 降幂扩角公式 都需要记住的