已知x⼀3=y⼀4=z⼀5,求xy+yz+zx⼀x눀+y눀+z눀的值

2025-06-28 13:54:38
推荐回答(1个)
回答1:

令x/3=y/4=z/5=k
则x=3k,y=4k,z=5k
所以(xy+yz+zx)/(x^2+y^2+z^2)
=(12k²+20k²+15k²)/(9k²+16k²+25k²)
=47k²/50k²
=47/50