用正交变换化简二次型与正交相似对角化有什么区别?

2025-06-27 04:14:04
推荐回答(2个)
回答1:

实对称矩阵必可对角化。即必有n个线性无关的特征向量。 至于正交矩阵,可用可不用。主要是二次型标准化的时候,正交矩阵恰好就是所要求的c.(合同变换所要求得可逆矩阵)。

B与A相似,就是存在可逆矩阵P使得。对矩阵A的相似对角化,就是B是对角矩阵的情况。

类似地,把上面的逆改为转置,B与A合同,就是存在可逆矩阵P使得。对矩阵A的合同对角化,就是B是对角矩阵的情况。

合同对角化是二次型化简要求的,相似对角化是矩阵特征值保持不变要求的,所以这些都在二次型种应用了。而且,由于正交矩阵的逆矩阵就是她的转置,所以用正交矩阵相似对角化,和合同对角化完美地统一了。

回答2:

n元二次型化标准形,具体解题步骤:
1、写出二次型矩阵A
2、求矩阵A的特征值(λ1,λ2,...,λn)
3、求矩阵A的特征向量(α1,α2,...,αn)
4、改造特征向量(单位化、Schmidt正交化)γ1,γ2,...,γn
5、构造正交矩阵P=(γ1,γ2,...,γn)
则经过坐标变换x=Py,得
xTAx=yTBy=λ1y1²+λ2y2²+...+λnyn²

相似对角化,具体解题步骤:
1、求矩阵A的特征值 (λ1,λ2,...,λs,设λi是ni重根)
2、求矩阵A的每一个特征值λi,求(λiE-A)x=0的基础解系(设为Xi1,Xi2,...,Xini)
(上面两步来判断A是否可以对角化)
3、构造P=(X11,X12,...,X1n1,X21,X22,...,X2n2,...,Xs1,Xs2,...,Xsns),则
P-1AP=diag(λ1,...,λ1,λ2,...,λ2,...,λs,...,λs)
其中有ni个λi(i=1,2,...,s)

显然易知二者的区别。
都是先求特征值,再特征向量。
正交变换,需要改造特征向量,使其满足正交化的特征。
相似对角化可以直接用特征向量,对于实对称矩阵相似的正交矩阵,则过程一样。

实际上二次型是实对称矩阵 !!!
二次型的正交化就是实对称矩阵用正交矩阵把实对称矩阵化为对角矩阵的过程。
它是一种特殊矩阵的相似化过程。

newmanhero 2015年6月12日22:07:56

希望对你有所帮助,望采纳。