a^(1/n)-1=bnlna/n=ln(bn+1)n(a^(1/n)-1)=lna*bn/ln(bn+1)当n足够大时0存在唯一kn使得1/kn<=b<=1/(kn+1)那么由于1/(n+1)1/(kn+2)kn<1/ln(bn+1)1<-kn/(kn+1)1那么lim bn/ln(bn+1)=1故lim n(a^(1/n)-1)=lim lna*bn/ln(bn+1)=lna
a^(1/n)-1=e ^(1/n *lna) - 1 与 (1/n *lna) 是等价无穷小lim(n->∞) n(a^(1/n)-1)=lim(n->∞) n(1/n *lna) = lna