证明:∵∠ACB=90°,DE是BC的中垂线,∴DE⊥BC,又∵AC⊥BC,∴DE∥AC,又∵D为BC中点,DF∥AC,∴DE是△ABC的中位线,∴E为AB边的中点,∴CE=AE=BE,∵∠BAC=60°,∴△ACE为正三角形,∵∠AEF=∠DEB=∠CAB=60°,而AF=CE,又CE=AE,∴AE=AF,∴△AEF也为正三角形,∴∠CAE=∠AEF=60°,∴AC ∥ EF,∴四边形ACEF为平行四边形,又∵CE=AC,∴?ACEF为菱形.