大学高等代数:如图,此为“求(x^n)-1在复数域和实数域上的标准分解式”的解析,只看n为偶数时的解析:

2025-06-28 15:34:31
推荐回答(1个)
回答1:

n为奇数时,只有一个实根1,分解为:(x-1)[x^(n-1)+x^(n-2)+...+1]
n为偶数时,只有两个实根1与-1,分解为:(x-1)(x+1)[x^(n-2)+x^(n-4)+...+1]
在复数域上,恒有n个复根.记w=cos(2π/n)+isin(2π/n),分解为:(x-w)(x-w^2)...(x-w^n)
因为有一个根为2-i,所以还有一个根为2+i,
所以有个因式为(x-2+i)(x-2-i)=(x-2)^2+1=x^2-4x+5
这样就可以分解为f(x)=(x^2-4x+5)(x^2+2x-3)=(x^2-4x+5)(x+3)(x-1)
f(x)=(x-2+i)(x-2-i)(x+3)(x-1)