∵sinx+ 3 cosx=2( 1 2 sinx+ 3 2 cosx)=2sin(x+ π 3 ),∴方程化为sin(x+ π 3 )=- a 2 .∵方程sinx+ 3 cosx+a=0在(0,2π)内有相异二解,∴sin(x+ π 3 )≠sin π 3 = 3 2 .又sin(x+ π 3 )≠±1,∵当等于 3 2 和±1时仅有一解,∴|- a 2 |<1.且- a 2 ≠