(1)证明:如图,在EB上取点S,使ES=2SB,连接MS,NS
∵AM=2MB,EN=2NC,ES=2SB
∴NS∥BC,又BC∥AD,∴NS∥AD,AD?平面ADE,NS?平面ADE,∴NS∥平面ADE.
MS∥AE,AE?平面ADE,MS?平面ADE,∴MS∥平面ADE,又MS∩NS=S,
∴平面MNS∥平面ADE,
∴MN∥平面DAE;
(2)证明:∵AD⊥平面ABE,∴AD⊥AE,又∵AD∥BC,∴BC⊥AE,
由已知BF⊥平面ACE,∴BF⊥AE,而BC∩BE=B,∴AE⊥面BCE.
则AE⊥BE.
∵四边形ABCD为矩形,∴AD⊥AB,
(3)解:取AB中点G,连结EG,在平面ABCD中作GH⊥AC于H,连接EH
∵AE=EB,∴EG⊥AB,由AD⊥平面ABE,知面ABCD⊥面ABE,∴EG⊥面ABCD,
∴EG⊥AC,又GH⊥AC,EG∩GH=G,∴AC⊥EGH,则∠EHG为所求二面角的平面角.
在Rt△AEB中,AE=EB=2,易得到:AB=2
,EG=
2
AB=1 2
.
2
在Rt△ABC中,AC=2
,由△AHG∽△ABC,可得
3
=GH BC
,∴HG=AG AC
=AG?BC AC
=
×2
2
2
3
.
6
3
∴在Rt△EGH中,tan∠EHG=
=EG GH