已知函数f(x)=log 2 (2 x +1).(1)求证:函数f(x)定义域内单调递增;(2)记g(x)=log 2

2025-06-28 19:41:22
推荐回答(1个)
回答1:

(1)证明:任取x 1 <x 2 ,则f(x 1 )-f(x 2 )=log 2 (2 x 1 +1)-log 2 (2 x 2 +1)=log 2
2 x 1 +1
2 x 2 +1

∵x 1 <x 2 ,∴0<
2 x 1 +1
2 x 2 +1
<1,∴log 2
2 x 1 +1
2 x 2 +1
<0
∴f(x 1 )<f(x 2
∴函数f(x)在R上单调递增;
(2)∵g(x)=log   2 ( 2 x -1) ,x>0,
∴m=g(x)-f(x)=log   2 ( 2 x -1) -log 2 (2 x +1)=log 2 (1-
2
2 x +1
).
当1≤x≤2时,
2
5
2
2 x +1
2
3

1
3
≤1-
2
2 x +1
3
5

∴m的取值范围是 [lo g 2
1
3
,lo g 2
3
5
]