解:运用换底:log14(56)=log3(56)/log3(14)
=〔log3(7)+log3(8)〕/〔log3(7)+log3(2)〕
log3(2)=1/log2(3)=1/a
log3(8)=3log3(2)=3/a
原式=(b+3/a)/(b+1/a)
=(ab+3)/(ab+1)
=1+2/(ab+1)
运用换底:log14(56)=log3(56)/log3(14)
=〔log3(7)+log3(8)〕/〔log3(7)+log3(2)〕
log3(2)=1/log2(3)=1/a
log3(8)=3log3(2)=3/a
原式=(b+3/a)/(b+1/a)
=(ab+3)/(ab+1)
=1+2/(ab+1)
log14(56)
=ln56/ln14
=(ln7+3ln2)/ln14
=ln7/(ln2+ln7)+3ln2/(ln2+ln7)
a=ln3/ln2 b=ln7/ln3
所以ln7/ln2=ab
原式=1./(ln2/ln7+1)+3/(1+ln7/ln2)=1+2/(1+ab)
具体对不对不确定,思路肯定正确,你在验证一下吧
换成ln为底的是因为电脑码字方便,也是通常使用的换底。
若log2 3=a,log3 7=b
则log2 3*log3 7=ab
即log2 7=ab
log14 56
=log2 14/(log2 56)
=(log2 2*7)/(log2 7*8)
=(log2 2+log2 7)/(log2 7+log2 8)
=(1+log2 7)/(log2 7+3)
=(ab+1)/(ab+3)