(I)a=1时,f(x)=1-
,函数的定义域为R.2
2x+1
又f(-x)+f(x)=(1-
+(1-2
2?x+1
)2
2x+1
=2-
-2?2x
(2?x+1)?2x
2
2x+1
=2-
2(2x+1)
2x+1
=0,
∴a=1时,函数f(x)为奇函数.
(Ⅱ)设x1<x2,
则f(x1)-f(x2)=(a-
)-(a-2
2x1+1
)=2
2x2+1
,2(2x1?2x2) (2x1+1)(2x2+1)
∵x1<x2,
∴2x1-2x2<0,(2x1+1)(2x2+1)>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴不论a为何实数f(x)总为增函数.
(Ⅲ)a=3时,∵2x+1>1,
∴0<
<2,-2<-2
2x+1
<0,2
2x+1
∴1<3-
<3.2
2x+1
∴a=3时,函数f(x)的值域为(1,3).