设y=f(x),则可建立微分方程 dy dx =y2∴ dy y2 =dx,解得y=? 1 x+C (C为常数)又由高阶导数公式:( 1 x )(n)= (?1)nn! xn+1 ,f(n)(x+a)=[f(x+a)](n)∴y(n)=(? 1 x+C )(n)= (?1)n+1n! (x+C)n+1 =n!yn+1故选:A.