已知△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列, cosB= 3 4 .(Ⅰ)

2025-06-25 22:32:26
推荐回答(1个)
回答1:

(Ⅰ)由 cosB=
3
4
,得sinB=
1- (
3
4
)
2
=
7
4

由b 2 =ac及正弦定理得sin 2 B=sinAsinC.
于是
1
tanA
+
1
tanC
=
cosA
sinA
+
cosC
sinC
=
sinCcosA+cosCsinA
sinAsinC
=
sin(A+C)
sin 2 B
=
sinB
sin 2 B
=
1
sinB
=
4
7
7
.(6分)
(Ⅱ)由
BA
?
BC
=
3
2
得ca?cosB=
3
2
,由cosB=
3
4
,可得ca=2,即 b 2 =2

由余弦定理:b 2 =a 2 +c 2 -2ac?cosB,又b 2 =ac=2,cosB=
3
4

得a 2 +c 2 =b 2 +2ac?cosB=2+4×
3
4
=5,
则(a+c) 2 =a 2 +c 2 +2ac=5+4=9,解得:a+c=3.(12分)