(I)由题意可得数列{an}的公差d=
(a5-a3)=2,1 2
故a1=a3-2d=1,故an=a1+2(n-1)=2n-1,
由Sn+bn=2可得Sn=2-bn,当n=1时,S1=2-b1=b1,∴b1=1,
当n≥2时,bn=Sn-Sn-1=2-bn-(2-bn-1),∴bn=
bn-1,1 2
∴{bn}是以1为首项,
为公比的等比数列,1 2
∴bn=1?(
)n-1=(1 2
)n-1;1 2
(II)由(I)可知cn=
=(2n-1)?2n-1,an bn
∴Tn=1?20+3?21+5?22+…+(2n-3)?2n-2+(2n-1)?2n-1,
故2Tn=1?21+3?22+5?23+…+(2n-3)?2n-1+(2n-1)?2n,
两式相减可得-Tn=1+2?21+2?22+…+2?2n-1-(2n-1)?2n
=1+2
-(2n-1)?2n2(1-2n-1) 1-2
=1-4+(3-2n)?2n,
∴Tn=3+(2n-3)?2n