任意取x1,x2∈[f(a),f(b)]且x1则存在x'1,x'2 ∈[a,b],使得f(x'1)=x1,f(x'2)=x2因为f(x)在[a,b]内是增函数所以内函数值越大,自变量容越大由x1又由反函数的性质可知,f-1(x1)=x1',f-1(x2)=x2'所以f-1(x1)-f-1(x2)=x1'-x2'<0f-1(x1)所以函数f-1(x)在[f(a),f(b)]内也是增函数