高二数学 实属x,y满足3x^2+2y^2=6x,则x^2+y^2的最大值为( )

A.7/2 B.4 C. 9/2 D.5 详解.
2025-06-28 10:53:37
推荐回答(1个)
回答1:

B.4

2y^2>=0
2y^2=6x-3x^2>=0
3x(x-2)<0
0<=x<=2

y^2=(6x-3x^2)/2
x^2+y^2=-x^2/2+3x=-(1/2)(x-3)^2+9/2
0<=x<=2
所以x=0,最小=0
x=2,最大=4

参考做法:

3x^2+2y^2=6x,
(x-1)^2+y^2/[√(3/2)]^2=1.
此方程为:椭圆方程,长轴长a=√6/2,b=1.则有:
参数方程为:
X=1+cosa,y=√6/2*sina.

x^2+y^2=(1+cosa)^2+(√6/2*sina)^2
=-1/2*cos^2a+2cosa+5/2
=-1/2(cosa-2)^2+9/2.
当cosa=1时,x^2+y^2有最大值,最大=4,
当cosa=-1时,x^2+y^2有最小值,最小=0.