(1)当n=1时,a1=S1=
a1(a1+1),1 2
∴
=a1,又a1>0,故a1=1.(1分)
a
当n≥2时,an=Sn?Sn?1=
an(an+1)?1 2
an?1(an?1+1),(2分)1 2
化简得(an+an-1)(an-an-1-1)=0,由于an>0,
∴an-an-1=1,故数列{an}是以1为首项,1为公差的等差数列,
∴an=n.(4分)
(2)由bn+1=bn+3an得bn+1?bn=3an=3n,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=1+3+…+3n-1=
(3n?1).(8分)1 2
(3)cn=
=3an 2
b
=3n 2×[
(3n?1)]2
1 2
,(9分)2×3n
(3n?1)2
当n=1时,c1=
=2×31
(31?1)2
<2;3 2
当n≥2时,cn=
<2×3n
(3n?1)2
=2×3n
(3n?1)(3n?3)